Hebbian crosstalk and input segregation
نویسندگان
چکیده
منابع مشابه
Hebbian crosstalk and input segregation.
Hebbian synapses respond to input/output correlations, and thus to input statistical structure. However, recent evidence suggests that strength adjustments are not completely connection-specific, and this "crosstalk" could distort, or even prevent, learning processes. Crosstalk would then be a form of adjustment mistake, analogous to mistakes in polynucleotide copying. The mutation rate must be...
متن کاملHebbian Crosstalk Prevents Nonlinear Unsupervised Learning
Learning is thought to occur by localized, activity-induced changes in the strength of synaptic connections between neurons. Recent work has shown that induction of change at one connection can affect changes at others ("crosstalk"). We studied the role of such crosstalk in nonlinear Hebbian learning using a neural network implementation of independent components analysis. We find that there is...
متن کاملInput Statistics and Hebbian Cross-Talk Effects
As an extension of prior work, we studied inspecific Hebbian learning using the classical Oja model. We used a combination of analytical tools and numerical simulations to investigate how the effects of synaptic cross talk (which we also refer to as synaptic inspecificity) depend on the input statistics. We investigated a variety of patterns that appear in dimensions higher than two (and classi...
متن کاملLearning input correlations through nonlinear temporally asymmetric Hebbian plasticity.
Triggered by recent experimental results, temporally asymmetric Hebbian (TAH) plasticity is considered as a candidate model for the biological implementation of competitive synaptic learning, a key concept for the experience-based development of cortical circuitry. However, because of the well known positive feedback instability of correlation-based plasticity, the stability of the resulting le...
متن کاملHebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
Spike-timing-dependent plasticity (STDP) is a form of long-term synaptic plasticity exploiting the time relationship between postsynaptic action potentials (APs) and EPSPs. Surprisingly enough, very little was known about STDP in the cerebellum, although it is thought to play a critical role for learning appropriate timing of actions. We speculated that low-frequency oscillations observed in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Theoretical Biology
سال: 2013
ISSN: 0022-5193
DOI: 10.1016/j.jtbi.2013.08.004